Introduction
The manufacturer may provide operational and performance information that contains the operational performance data for the aircraft such as data pertaining to takeoff, climb, range, endurance, descent, and landing. To be able to make practical use of the aircraft’s capabilities and limitations, it is essential
to understand the significance of the operational data. The use of this data in flying operations is essential for safe and efficient operation. It should be emphasized that the manufacturers’ information regarding performance data is not standardized. If manufacturer-published performance data is unavailable, it is advisable to seek out performance data that may have already been determined and published by other users of the same small UA manufacturer model and use that data as a starting point.
Effect of Temperature on Density
Increasing the temperature of a substance decreases its density. Conversely, decreasing the temperature increases the density. Thus, the density of air varies inversely with temperature. This statement is true only at a constant pressure.
In the atmosphere, both temperature and pressure decrease with altitude and have conflicting effects upon density. However, a fairly rapid drop in pressure as altitude increases usually has a dominating effect. Hence, pilots can expect the density to decrease with altitude.
Effect of Humidity (Moisture) on Density
The preceding paragraphs refer to air that is perfectly dry. In reality, it is never completely dry. The small amount of water vapor suspended in the atmosphere may be almost negligible under certain conditions, but in other conditions humidity may become an important factor in the performance of an aircraft. Water vapor is lighter than air; consequently, moist air is lighter than dry air. Therefore, as the water content of the air increases, the air becomes less dense, increasing density altitude and decreasing performance. It is lightest or least dense when, in a given set of conditions, it contains the maximum amount of water vapor.
Humidity, also called relative humidity, refers to the amount of water vapor contained in the atmosphere and is expressed as a percentage of the maximum amount of water vapor the air can hold. This amount varies with temperature. Warm air holds more water vapor, while cold air holds less. Perfectly dry air that contains no water vapor has a relative humidity of zero percent, while saturated air, which cannot hold any more water vapor, has a relative humidity of 100 percent. Humidity alone is usually not considered an important factor in calculating density altitude and aircraft performance, but it is a contributing factor.